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We consider a dynamic method, based on synchronization and adaptive control, to estimate unknown
parameters of a nonlinear dynamical system from a given scalar chaotic time series. We present an important
extension of the method when the time series of a scalar function of the variables of the underlying dynamical
system is given. We find that it is possible to obtain synchronization as well as parameter estimation using such
a time series. We then consider a general quadratic flow in three dimensions and discuss the applicability of our
method of parameter estimation in this case. In practical situations one expects only a finite time series of a
system variable to be known. We show that the finite time series can be repeatedly used to estimate unknown
parameters with an accuracy that improves and then saturates to a constant value with repeated use of the time
series. Finally, we suggest an important application of the parameter estimation method. We propose that the
method can be used to confirm the correctness of a trial function modeling an external unknown perturbation
to a known system. We show that our method produces exact synchronization with the given time series only
when the trial function has a form identical to that of the perturbation.

PACS numbd(s): 05.45.Tp, 05.45.Xt

[. INTRODUCTION also require annealing to eliminate the possibility of getting
trapped in a local minimum. The dynamic method as de-
An experimental observation often consists of reading acribed in Ref[2] requires only one time evolution of the
time series output from a dynamical system. Such a timeystem equations. The method also takes care of annealing in
series can contain information about the number as well aa dynamic way.
the form of the functions governing the evolution of the sys- In the first part of this paper we review our method for
tem variables including nonlineariti¢i any) and the param- parameter estimation in brief. We extend it to a case when
eters[1]. The estimation of parameter values from a giventhe time series of acalar functionof phase space variables
chaotic scalar time series of a nonlinear system is the topic dé given. We then go on to study the applicability of the
our interest here. method to a general quadratic flow in three dimensions. This
We have recently reported a method to estimate unknowsystem has a large number of parameters and we try to esti-
parameters dynamically from the chaotic time series of amate some of them using our method.
single phase space variable when the system equations areln the second part, we show that it is possible to extend
known [2]. The method is based on a combination of syn-our method to a more realistic situation, when the given time
chronization[3-5] and adaptive contrdl6] similar to that series is truncated after a finite time. We find that a repetitive
used by John and Amritkdi,8]. use of the finite time series can be made to estimate the
The problem of parameter estimation in nonlinear dynamunknown parameters of the underlying system without alter-
ics has been considered earlier. Parlitz, Junge, and Kocaréng the dynamic nature of the method. The accuracy of such
have developed a static methf@] based on minimization an estimation increases with increasing length of the given
while Parlitz has developed a method based on autosynchrtime series. We also see that the accuracy saturates with the
nization [10]. Unlike our method, autosynchronization number of times the finite time series is used.
method requires an ansatz for the parameter control loop and Lastly, in the third part of this paper, we suggest an inter-
gives slower convergences in many cases. A method requiesting application of the parameter estimation method. Con-
ing a vector time series has been reported by Baker, Gollulsider a situation where an unknown perturbation disturbs a
and Blackburn11] and another method based on symbolicknown chaotic system. In many practical situations when the
dynamics is discussed in Refd2-14. The effect of noise external perturbation is unknown, an ansatz function model-
on parameter estimation was studied by[2kand recently ing the behavior of the external perturbation is tried. We
by Goodwin, Brown, and Jundd5]. In contrast to many of show that it is possible to use our parameter estimation
these methods our method in RE2] works asymptotically method to confirm the form of an ansatz function modeling
so that an exact estimation of the parameters is in principléhe external perturbation.
possible. The static methods based on minimization are com- In Sec. Il A we briefly introduce our method of parameter
putationally expensive because they take a longer time to ruastimation and discuss its important features. In Sec. 11 B we
due to many iterations required for convergence, and thegxtend it to a general situation when the given time series is
obtained as a scalar function of the phase space variables.
Section Il C deals with a general quadratic flow in three di-
*Electronic address: nil@prl.ernet.in mensions. In Sec. Il we extend the method to the case of
Electronic address: amritkar@prl.ernet.in finite time series and present two examples. Finally, in Sec.
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IV we apply the method to confirm the form of an unknown _
external perturbation to a known dynamical system. In Sec. a'=—8(x;—%1) w|l —|, 4
V we conclude with a summary of the results.

where § is called the stiffness constant amdis some suit-
ably chosen function off,/da’. A simple choice fow is
A. The method w=9f,/da’ giving the adaptive evolution equation far

Here, we briefly introduce our method for parameter esti8S
mation from a scalar time series. We would like to direct the
reader to Ref[2] for a more detailed discussion. We start by o' =— 8(X.—x )5_f1 (5)
considering an autonomous dynamical system of the form I

Il. PARAMETER ESTIMATION

x=f(x, @), 1 Equation(4) or Eq.(5) when coupled with Eg(2) consti-

) i i tutes our method of parameter estimation. A vectdr,¢')
wherex=(xy,Xz, ... X,) is ann-dimensional state vector jnitia|ly set to random values asymptotically converges to the
whose evolution is described by the functioh  yector ,a) in Eq. (1) provided the conditional Lyapunov
=(f1,....,f)). We denote a set aih unknown scalar pa- exponents for the combined systéEys.(2) and (5)] are all
rameters bya=(ay,az, . .. ,ay). The possible appearance pegative. This facilitates the estimation e@f
of any other parametefassumed to be knowis not shown Equation (5) is equivalent to a dynamic algorithm for
in Eq. (1). minimization of synchronization error between E¢b. and

Without loss of generality we assume that a time series ofp) as discussed in Reff2].

the variablex, is given. The problem we consider is to esti-  Note that, if we assume in the above discussion that the
matea from the given scalar time series ©f, assuming the  ,nknown parameter appears in the functiofy, correspond-
functional form off to be known. _ ing to the variable; for which the time series is given, then
In analogy with the control method used earlier by Johne calculation of the factosf,/da’ in Eq. (5) is straight-
and Amritkar(7,8], we combine synchronization with adap- fonward. However, this may not necessarily be the case. The
tive control to achieve our goal of estlmatmg.m Eq. (1)'as parametere may appear in any of the other system func-
follows. We construct another system of variabtehaving  tions, If it appears in the functions for the variables for which
a structure identical to that of E¢l) with a linear feedback e time series is not given, e.g., in any of the functions

proportional to the difference; — x, added in the evolution f,,...,f.in Eq.(1), then correspondingly the calculation of
of the variablex;. Thus the system is given by the factordf,/da’ becomes nontrivial.
. To make this point clear we assume that the unknown
xp=F1(X" @) — e(x;—=X1), parameterr appears in the functiofy(x) governing the evo-
. lution of variablex, with k# 1, while the time series of; is
xj=fj(x",a"), j=2,...n, (2)  given. In such a case E(p) is modified to
where the functiori=(f,, ... ,f,) is the same as that in Eq. ] oty of,
(1). The initial values of parameterg’ that correspond to a'=— 6(x1—x1)—, — (6)
the unknown parameters in Eq. (1) are chosen randomly. Xy da

The newly introduced parameteris the feedback constant.
It is known that if ' =« then the system&l) and (2) syn-  (5€€ Ref[2]). , _ ,
chronize after an initial transient, provided the conditional ~Further, if the variablex itself does not appear in the
Lyapunov exponent€CLE's) of the syster(2) are all nega- function f, then the complexity of the calculation increases
tive [2]. The CLE’s are obtained from the eigenvalues of theStill more. This issue was explained in detail with an ex-

Jacobian matrixJ whose elements are given by ample in Ref[2].
Next we consider the case when the aebf unknown
of; parameters contains more than one element, say,
I3 =7 ~ €91 3 (ay,a,,...). Now we set up andaptive evolution for each
! of the corresponding parametei®;( @5, . ..). For thecase
Since the values = (ay, . . . ,a,,) are unknown, we need Of two unknown parameters, and a,, appearing in func-
to seta’ =(a}, ... ) to random initial values and evolve tionsf, andf, respectively, the adaptive evolution is given

themadaptivelyso that they converge to the values Note by
that a good guess for the initial values®f can be useful in
many cases.

We first consider the case when (and its counterpart
a') contains only a single element, i.e., the case when only a
single parameter in Eq1) is unknown. For notational sim-
plicity we now denote this single parameter by We start dé: — Sy(X,—Xp)— — 7
with a random initial value forr’ and evolve it in a con-
trolled fashion so that it converges #0 This is achieved by
raisinga’ to the status of a variable which evolves as where §; and &, are two stiffness constants deciding the



PRE 61 DYNAMIC ALGORITHM FOR PARAMETER ESTIMATION . .. 6463

rates of convergence. For estimating the valuesrpfand To demonstrate the above procedure, we consider the Lo-

a,, Eqs.(7) can be coupled with Eq$2), which provide the renz system given by

necessary synchronization of the system variables if the as-

sociated CLE’s are negative. .

In the next subsection we extend our method to a situation x=o(y—x),

when a time series of scalar functionof phase space vari-

ables is given. We show that it is possible not only to build a .

synchronizing system but also to adaptively estimate an un- y=rx=y=xz,

known parameter.

B. Parameter estimation using time series of a scalar function 2=xy=-bz, (10

of variables

In our discussion of parameter estimation in the previousthare the variablesxiy,z) define the state of the system

subsection, we have assumed that time series of one of t hile (U’r’.b) are t.he three parametezrs. We .con_3|der the case

phase space variables is given. This may not be the case fphen the time series a{x,y,2)=0.5"+1.ly IS given as an
gutput of the above system and the parameté unknown.

many practical applications, and in general the observe T timate th lue of ¢ ; f variabl
quantity can be a function of the phase space variables, say, , 0 estimate the value ar, we form a system ot variables

s(x). It is possible to construct a synchronization scheme i x',y",z’,0") similar to Eq.(9). The evolution equations are
such a situatiof16].

We consider the system given by Ed) and assume that
the time seriess(x), which is a function of phase space
variables, is given. A synchronization scheme can be set up

X'=o'(y'—x')—e sgnx')[s'—s(x,y,2)],

in this case by using a suitable modification of the feedback v =rx'—y' —x'z,
in Eq. (2) as follows[16]:
. as’ S Iy ’
x1=fl<x',a>—esgr<—,)[s'—s(x)], 2 oxyib
Y
=) j=2,...n, ® o'==5 sgrix)[s' —s(xy. 2]y’ —x),  (11)

where s’=s(x') and we give a feedback proportional to
(s’ —s) in the functionf; with feedback constan¢é. The
function s(x) denotes the given time series. It can be shown
that if the parametera are assumed to be known, the above ¥
system of equations fox’ [Egs. (8)] converges to, pro- '*
vided the CLE’s are all negatid6]. _
In Egs. (8), we have assumed thafx) has an explicit ——
dependence on the variabte so thatds’/dx;#0. If this is 10 b 7
not the case, we can choose any other variable for the feec™
back on whichs(x) depends explicitly. The factor sgn() in >
Eq. (8) makes sure that the term provides a “negative feed- ~1!°© | | |
back” for all times so that a convergence is feasible. 20
To estimate the parameterin such a case, we set up a 10 i
synchronization scheme combined with an adaptive controly
in analogy with Egs(2) and(4). This system can be written ™~ _

10 —
as T S S I S B
Rrrm—————7 71— ——
o/ ror gs’ ' 0 a
X;=f1(x",a")—esgn — |[s"—s(X)] 6 _a _
! b -4 -
. -6 - -
X' =f(x'. a' i=2...n _ P TS N S S [ S S O NS S S
i=fhal) 1=2,...n, %o 5 10 15 20
time
: as’ afq ) _
a'=—35 sgn — |[s"—s(x)]—. (9) FIG. 1. The plotga)—(d) show the evolution of the differences
1 da x'—=x,y'—vy,z2'—z,6" — o as a function of time for the Lorenz sys-

) ) ] ) tem [Egs. (10) and (11)], respectively, for the case when a time
Equations(9) can be used for estimating when a time  geries fors(x,y,z) = 0.5+ 1.1y is given ando is unknown. The
series ofs(x) is given. The condition for such an estimation gifferences go to zero asymptotically, indicating that it is possible
of « to be possible is that the CLE’s associated with theto use our method to estimate an unknown parameter when the time
system(9) are all negative. series fors(x) is given.
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wheres’ =0.5¢'2+1.1y". zero ast—. This indicates that an unknown can be es-
Figures 1a)-1(d) show the evolution of the differences timated using Eq(11).
X' =x,y'—vy,z2' —z,0' — o respectively{Eqgs. (10) and (11)] The CLE’s are obtained using the Jacobian mairijven

as a function of timé. We see that these differences all go to by

— o —esgnx)x o—1.1le sgnx) 0 y—x
r—z -1 -x 0
J= y N b o | (12

—osgnx)x(y—x) —1.16sgnx)(y—x) O 0

We have verified that all the CLE’s are less than zero. Equations(14) when coupled to the system of variables
We have performed simulations and successfully esti{x’,y’,z’) with an identical structure of evolution as Eq.
mated unknown parameters in a Lorenz system with othef13) and with a feedback term in the evolution »f can
forms of the functions(x,y,z). The function s(x,y,z) provide the necessary estimation of parameters when the
should, however, be such that all the associated condition&LE’s associated with the reconstructed system are all nega-
Lyapunov exponents are negative. tive.
In Figs. 2a)—2(c) we plot the time evolution of the dif-

C. A general quadratic flow in three dimensions ferencesa; —a;,a,—a,a;—ay as a function of time. The
correct value ofa; was zero while the other two were non-
zero. All the differences go to zero, indicating the feasibility
of simultaneous estimation of the three parameters
(a;,a,,a7) even when the actual value of one of them is
zero. This shows that the method does not falsely detect a
+3622+ a;xXy+agyz+agxz, term that is absent in the system.

We have found cases when our method can be used suc-
cessfully for the systenfl3) to estimate as many as five

Now we consider a quadratic flow in three dimensions
(3D) given by

).(: a.0+ a.1X+ a2y+ a3Z+ a.4X2 + a5y2

y=bo+byX+boy+bsz+b,x2+ bsy?

0
where @q, . . . ,29,bg, ... ,bg,Co, - .. ,Cg) form a 30 dimen- -
sional parameter space anxl,y,z) are the three variables. 3
We have performed simulations in which we have assumec
more than one of the 30 parameters of the sydtEBhto be T _os5
unknown and tried to estimate them when a time series ofa’
one of the variables is given. -1
To elaborate, we assume some of the 30 parameters to b A R R R B
unknown while the remaining are known. Some of the 15
known or unknown parameters may be zero, thereby making
the corresponding term absent from the system. To illustrate
the procedure we consider a case when three parametel s 05
(a;,a,,a;) are unknown and a time seriesofs given. We °
set up a system of equations similar to E2). with adaptive
control loops similar to Eq(7) for the three parameters

+b622+ b7xy+ b8y2+ ngZ, 0.4 : T L e T I ]
0.3 [ 3

Z=Co+CyX+ Coy + CaZ+ CuX2+ Csy? ¥ oz E
+ CZ2+ CoXy+ Cgy Z+ CgXZ, (13 ® o1l =

o

© e

PR IS T SR NN SN ST A1 PR
P 20 40 60 80
(a;,a5,a7) as time

-
o
o

FIG. 2. The plotga)—(c) show the evolution of the differences
a;—a,,a,—a,,a,—ay for a general quadratic flow in 3[DEgs.
(13) and(14)], plotted as a function of time when the time series of
éé: = 5(X" = X)Y', X is given. We see that all the differences approach zero, indicating
the feasibility of simultaneous estimation of more than one param-
-, , L eter. The correct value @f; was zero, showing that a term absent in
a;=—o3(x"=x)x"y’. (14 the flow equations is not falsely detected by our method.

aj;=—8,(x'—x)x’,
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parameters simultaneousl§One such case is the set of pa- where\ is the characteristic Lyapunov exponent of the sys-
rametersa;,a,,a;,bs,c;, while the time series ok is  tem. For a chaotic system with a single positive Lyapunov

given) exponent denoted by*, Eq. (18) reduces to

Further, we have also found that whany two of the 30 N
parameters in the systefd3) are unknown, we can apply §~exp{ . )\_ t] (19
our method to simultaneously estimate them asymptotically d |’

to any desired accuracwhen the time series of a suitably o ) N

chosen variable is given. Our results suggest that the infor- Now we will discuss the algorithm for repetitive use of a
mation about all 30 parameters should in princip|e be Conflnlte time SerI.eS to gstlmate an unknown parameter. As in
tained in the time series of a single variable of the systemthe case considered in Sec. IIA, we assume that the param-

although at present we do not have any systematic approadiersa=(a1,az, ... an) in Eq.(1) are unknown while the
to the simultaneous estimation of all of them. time series ofx, is given. We further assume that the time

series is truncated after a finite tire
For the time interval &t<T, we can use a procedure

IIl. PARAMETER ESTIMATION USING A FINITE TIME identical to that described earligEgs.(2) and(5)] to evolve
SERIES variables &’,a') with random initial conditions. The given
A. Algorithm for repetitive use finite time series is fed into syste(@) as in the earlier case.

) ) , , . In this way we can get an approximate valuengfwhich we
In this section we discuss an algorithm for repetitive usejenote amt=a'(T).

of our method to impove the accuracy of parameter estima- Now at timet=T we set the variables’ to exactly the
tion when the given time series is of finite duration. Beforeg, o (randomly chosen earligrinitial values while o’

going on to describe the algorithm it should be mentioned_ 1 ;.4 feed the same finite time seripgt)|0<t<T}

here that, even if a finite time series is used repeatedly, we d&gain into the systert2) through the feedback terms in Egs.
not expect an exact estimation of the unknown parameter. ) and (5), i.e., we sex(t+T)=x(t). We now evolve the

I'r:“te CIE‘aOt'C trajectorty sets %Ilmnt_on tth?j a_I(_:r(]:_uracy tt? WhIChy o iables &', o) for the time intervalT <t<2T to obtain a
e unknown parameter can be estimated. This can be seen ds,'ciimated value of, which is a? a’ (27).

follows. We consider symbolic dynamics on the attractor that We repeat the procedure to get successive estimates for

provides a generating partition of the attractor. It is weII,[he value ofa denoted byat,a2,a®, ... .aV, ... attimes

known that as the system evolves in time, a finer and fine{zT oT 3T NT respectively. Thus, starting from

coarse-graining is required to specify a particular trajectory, n initial guess for the value af, we obtain a sequence of

or, alternatively, the trajectory gives us a finer coarse-graine stimatesa®, o, . . . .a™ after N usages of the given finite

|nfqrmat|on ."’}bOUt the attre}ctor. T_he ””f.“bef of coarse—time series. For large enougdt we get a better and better
grained partitions as a function of time varies as

estimate ofa, although eventually the accuracy of such an
np,~exp{ht}, (15)  estimate saturates &bis increased further. o
The conditions for the method of parameter estimation
using a finite time series to work successfully are that the
conditional Lyapunov exponents associated with the recon-
structed system should be all negative, and the finadter
hich the given time series is truncated should satiEfy
7, wherer denotes the transient time required for synchro-
nization of the systemél) and (2) with the parameter evo-

whereh is the Kolmogorov entropy17].

If ¢ is the volume of a hypercube in & dimensional
phase space and if the size of the attractor is normalized
unity, the number of hypercubes in a generating partition_
may be approximated as

1 lution given by Eq.(5). In the next subsection, we discuss
Ny~ Ik (16)  two examples of parameter estimation from a finite time se-
ries, viz., a Lorenz system and an electrical circuit of a phase
converter.
Equations(15) and (16) indicate that the length scale of a
hypercube in a generating partition varies as B. Examples

1. Lorenz system

h
§~exp{ - at]- 17 As our first example we choose the Lorenz system given
by Eq. (10), where we assume that the time sed&ét)|0
<t<T} is given and the value of is to be estimated. We

It can be seen from Eq17) that as long as is finite, the  set up the following system of equatiofsee Egs(2) and
volume of the hypercube in a coarse-graining of the attractoys):

will not reduce to zero. Thus a finite trajectory sets a limit on

the accuracy to which any information can be extracted from X' = o(y'—x")—e(x' —x),
it. This can be further related to Lyapunov exponents using . o,
the famous Kaplan-Yorke conjectur&8] as y =rxi-y =x'z,

'Zr :X/y/ _ bZ/,

2Z\>0N
§~ex - d ty, (18) b_rz_(s(xr_x)(y/_xl), (20)
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FIG. 3. The plot shows the evolution of the differenee- o as
a function of time in the Lorenz systefiq. (20)] with unknown
parameterr when the given time series afis truncated after the
time T=20. We have used the finite time series three times an L . .
plotted the curve for the interval0t<3T. We see that the succes- tem [Eq. (20)]. W? see that after an initial transllent.the difference
sive values of the difference at0,T,2T,3T decrease. This indi- decrease_s, showing better accuracy of the e_stlmgtlon. We also see
cates that a repetitive use of the finite time series can improve thg@t asN Increases fl_thher the accuracy Of. estl_m ation satura?es, and

it is not possible to improve upon the estimation beyond this. The

three curves correspond to three different valuesl afhere T,

<T,<Ts. It can be seen that a larg€leads to a better estimation,
where we feed the given time series in the evolutiox @dr  as expected.
the interval G<t<T to obtain the first estimate™.

As described in the Sec. Ill A, we then go on repetitively  The three curves in Fig. 4 correspond to three different
feeding the same finite time serigft) into Eq. (20) to ob-  values of T=T,<T,<T;. We see that increasirif gives a
tain successive estimates for the valuevofStarting from a  better estimate of the parameter. This is natural since a very
random initial value we denote this sequence of estimates bing time series corresponding To— = is expected to give
a%at, ... 0N, whereN denotes the number of times we use an exact estimation of the unknown parameter.
the given time series. We have similarly implemented our method to estimate

In Fig. 3 we plot the evolution of the differene€ —o as  other parameters of the Lorenz system using finite time se-
a function of timet during the time interval &t<3T where ries of eitherx or y. The method fails to estimate any of the
we use the time seriegt) thrice. We see that the difference parameters when the time seriesza$ given. The reason for
decreases as we increase the number of times the finite timhis is that one of the associated conditional Lyapunov expo-
series is used. We also observe that shortly after each resetents is critically zero and the convergences are slow.
ting of the initial vector &’,y’,z"), which is done at times
T,2T, the synchronization weakens and fluctuations are 2. A phase converter circuit

present. This is due to the random resetting of yhend z As our next example, we consider the set of equations

components, which gives a transient before the synchronizgge g ribing an electrical circuit for a phase convefte9]
tion is recovered. An appropriate feedback constamay be system in a dimensionless form, given by

chosen to lessen this transient in every usage of the time
series.

In Fig. 4 we plot the successive difference8— o as a
function of N, the number of times we use the given finite X
time series. We see that the differene¥— o goes on de- Xo= —kxp— — (x2+3x2),
creasing with increasinty. However, asN is increased fur- 4
ther, it saturates to a constant finite value depending on the ,
length of the time series used for the calculations. This is X3=Xa,
consistent with our expectations that finite time series can
contain only finite information about the system, as dis-
cussed in Sec. IlIA, e.g., using™~0.9, the finest length
scale that can be obtained using a finite time series With
=30 is estimated to be 0.0EEq. (19)], which means an wherek andB are the two parameters. Here we consider the
accuracy of about IC%. This is also the order of magnitude time seriegx,(t)|0<t<T} to be given. Notice that the sys-
of the accuracy of parameter estimation. tem(21) has a simple time dependent term making it a non-

FIG. 4. The graph shows the successive differencés o plot-
ted as a function olN, the number of times a finite time series
éx(t)|0stsT} is used to estimate an unknownin a Lorenz sys-

accuracy of parameter estimation.

X]_:XZ,

. X3 5
Xa= —kxs— Z(X1+ 3x3) + B cost, (21
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FIG. 6. The graph shows the successive differeméesk plot-
ted as a function ofN, the number of times a finite time series
{X,(1)|0<t=<T} is used to estimate an unknowrin a phase con-
b verter circuit systeniEg. (21)]. We see that after an initial transient
g the difference decreases, showing better accuracy of the estimation.
] We also see that dd increases further the accuracy of estimation
saturates, and it is not possible to improve upon the estimation
beyond this using our method.

perturbation to a known chaotic system. In many practical

] situations when the external source of a disturbance in not

— known, a trial function is used to model the perturbation.

g We imagine a situation when it is required to verify a

_ proposed trial model form for the perturbation. We denote

] the actual perturbation by a functidn(x,«) and the trial

R T R R S T function by G(x’,u"), whereu and u’ are parameters. In

o 0 2 the following, we demonstrate the use of our method of pa-

(b) X, rameter estimation to confirm the form of the trial function.
Note that here we do not deal with the issue of obtaining the

FIG. 5. A schematic diagrant) of a phase converter circuit form of the model function.
[Eq. (21)] which shows a chaotic behaviofh) shows a chaotic Now if the proposed trial functios models the external
attractor for the parameter valuks-0.1, B=3.0. perturbationF correctly, then a scheme based on synchroni-

autonomous system. Such a system is equivalent to an ag&tion combined with adaptive control should produce syn-

successfully estimated any one of the parametessB (or ~ Verge (to ). Thus a successful synchronization should

both) using finite time series af,(t). indicate a correctly chosen model function. In this manner
Figure 5a) shows a schematic diagram of the circuit for we can use the method to distinguish between a correct

the phase converter. The system in known to exhibit chaotiecnodel and a wrong model for an external perturbation. We

behavior due to period doubling bifurcations, codimension 2laborate on this application further using the example of the

bifurcations etc. Figure(®) shows a chaotic attractor in the Lorenz system.

X1-X, plane of the phase space. Consider the Lorenz system perturbed by a sinusoidal
Figure 6 shows the plot of the successive differericés term F = A sin(wx),

—k as a function ofN, the number of times we use the given

time series, for two different values of the truncation tifne x=a(y—x)+Asin(ox),

As expected, the accuracy of the estimation increases with

increasingT, while showing a saturation with increasing :

2

4 !

number of repeated usages. y=rX—y—xz,
Thus, we have shown how the method of parameter esti-
mation can be used when a finite time series is given. The z=xy—-bz, (22)

method works when the associated CLE’s are all negative

and the time series given is of longer duration than the trangnere we assume the unperturbed Lorenz system to be
sient time required for synchronization. known. The functionF = A sin(wX) is the external perturba-
V. FORM OF A MODEL PERTURBATION tion. We assume that the time seriesyofs given as an
output of the systeni22).
Here we describe an interesting application of our method To set up the required scheme we construct a system of
to test a function modeling an unknown external source of/ariables &’,y’,z") and their evolution as
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FIG. 7. The plots(a)—(c) show the time evolution ofx’ FIG. 8. The plots(a)—(c) show the time evolution ofx’

—X, M1, and u,, respectively, for the Lorenz system with feed- —X, w4y, and u,, respectively, for the Lorenz system with feed-
back given in the equation fax and with the trial perturbation back given in the equation fox and with the trial perturbation
function G=ux2+ u,, while the correct perturbation i function G=u x+ u,x3, while the correct perturbation i§
=Asin(wx) [Eq. (23)]. We see that the guess functi@= u,x> =Asin(wX) [Eq. (23)]. It can be clearly seen that even whén
+ ., fails to produce synchronization and hence can be discardee uix— u,x3 matchesF in form up to two leading terms in the
as a plausible model foF. It can also be seen that there is no expansion of, it fails to produce synchronization and hence can be
convergence of the parameters taking place. discarded as a plausible model fér Also there is no convergence
of the parameters taking place.

X' =o(y' =x)+G(x',y 2, u')— e(x’ —x),

y' =rx'—y' —x'z, 0.4 —— T T — —

z'=x"y'—bZ, h
]

JG

"

p'=— 8 X)), (23

ﬂlu, 82 -
E b
0
whereG(x',y’z") is the trial perturbation function. We feed . I

the time serieg(t) obtained from syster{22) into the model *-05
system(23). Now if G models the behavior df correctly
then the two systems should exhibit synchronization, while
the parameters should show convergence to the correct val- s B S S B
ues. In our simulations we have tried several different forms 15 F c
for the trial functionG.

Figures Ta)—7(c) show the time evolution ofx’ £ L
—X, mq, and w,, respectively, while the feedback is given w”

0

into x and the trial function iSG= u;x?+ u,. It can be 05 | | |

clearly seen that there is no synchronization of variables. The T g 30 —
trial function G= u,x?+ u, thus fails to produce synchroni time

zation and hence can be discarded as a plausible model for
We also note that the parametet$ and u, do not show

'S
o

FIG. 9. The plots(a)—(c) show the time evolution ofx’
—X, w1, and u,, respectively, for the Lorenz system with feed-

convergence. o back given in the equation fax and with the trial perturbation
In Figs. 8 anq 9, we P'Ot S|m|_lar graphs for two more fynction G=u,sin(u,X), while the correct perturbation ¥
choices of the trial function. In Figs.(8-8(c) we useG =Asin(wx) [Eq. (23)]. It can be clearly seen that the difference

:M1X*M2_X3 and p|0tX/_*X' M, and u, respectively. W_e x'—x converges to zero asymptotically, indicating an exact syn-
choose this form ofG since it represents the two leading chronization between the variables. Thus by using our method the
terms in the series expansion of the functier Asin(wx). guess for the model perturbation function can be easily justified.
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rectly modelsF, synchronization does not take place. This
shows that along with the form d& we can also confirm a
guess about the perturbed variable.

Thus, the results presented in this section suggest that the
a Ity method which we use for estimating parameters can be used
L L L to distinguish between a correct trial function and the wrong
e trial functions for an unknown external perturbation to a
known systenj20].
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. V. SUMMARY AND CONCLUSIONS

We have described a dynamic method of parameter esti-
mation from a given chaotic time series of a phase space
variable of a dynamical systef2]. Further, we have gener-
alized the method for the case when the quantity for which

1.205 F

SO C the time series is given isstalar functionof the phase space
1.195 [ variables. We have shown that it is possible not only to syn-
C a chronize two systems using the time series of the scalar func-
T e e tion but also to asymptotically estimate unknown parameters
time adaptively to any desired accuracy. This is done by provid-

ing a linear feedback in the evolution of one of the variables
ferencex’ —x and the parameters, and u,, respectively, for the on which the scalar funqnon exphcﬂly_depends. _The mthod
Lorenz system with feedback given in the equationX@nd with Wor_ks s_ucce_ssfully provided the function fo_r which the _tl_me
the trial perturbation functiofs= u; sin(u,) in the equation fog, series is given is such that th_e associated conditional
while the correct perturbation B=A sin(x) in the equation fox ~ LYapunov exponents are all negative. ,
[Eq. (24)]. Thus, unlike the case plotted in Fig. 9, the trial function Ve have also applied our method to a system with a large
used here perturbs the wrong variable. It can be clearly seen that tiimber of parameters, i.e. a general quadratic flow in 3D.
trial function G does not produce synchronization between vari-We have observed that a simultaneous estimation of a few
ables. The parameters also do not converge. Thus, as expected, fh@rameters is possible provided the condition of convergence
guess functiorG = u(sinu,X) when added to the wrong variable as stated in Ref.2] is satisfied i.e., all the CLE’s are nega-
cannot model the perturbation. tive.

As a next consideration, we have extended our method to
We can see from Fig. 8 that such an approximation fails ta realistic situation when the given series is truncated after a
produce synchronization and also convergence of paranfinite time. We have shown that repetitive use of a finite time

FIG. 10. The plotga)—(c) show the time evolution of the dif-

eters. series can be made to estimate an unknown parameter of the
As a third choice we us&= u;sin(uyx) in Eg. (23) and  system. The accuracy of the parameter estimation saturates
plot the time evolution ok’ —Xx, wq, andu, in Fig. a)—  as the given finite time series is used more and more times.

9(c), respectively. The difference —x goes to zero as time The accuracy increases with increasing length of the given
increases, showing synchronization. The parameigrand  time series.
M, converge to the correct valudsandw, respectively. The Finally, we have demonstrated an important application of
variablesy’ andz’ also synchronize witly andz, respec- our method in confirming the correctness of a trial model
tively. This confirms that this trial function correctly models function for an unknown external perturbation to a known
the functionF. system. We see that a perfect synchronization between a per-
Now as a last consideration, we use the foi® turbed system and its dynamical copy using a model for the
= w4 Sin(uyX) again, but unlike in Eq(23), we perturb a perturbation is possible only when the form of the trial func-
wrong variable in the model system, i.e., we choose to addéion is correctly guessed. These results indicate that our
the trial perturbation in the evolution of, say,. The feed- method can be used as a test for the trial model for an un-

back is given inx. The evolution equations are known external perturbation to a known system. Another
possible applicatior{not discussed in the papeis as fol-
X'=o(y —x')—e(x’' —Xx), lows. Our method may be employed to experimentally mea-
sure the unknown value of a component added to a known
y' =rx'—y' —x'z/+G(x",y',z', u), circuit. In such a situation the equations governing the circuit
are known and can be used to estimate the unknown compo-
7' =x'y' —bz, nent value accurately. This is feasible due to the asymptotic
convergences in our method.
. G
,u’=—5(x’—x)—,. (24
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