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Dynamic algorithm for parameter estimation and its applications
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We consider a dynamic method, based on synchronization and adaptive control, to estimate unknown
parameters of a nonlinear dynamical system from a given scalar chaotic time series. We present an important
extension of the method when the time series of a scalar function of the variables of the underlying dynamical
system is given. We find that it is possible to obtain synchronization as well as parameter estimation using such
a time series. We then consider a general quadratic flow in three dimensions and discuss the applicability of our
method of parameter estimation in this case. In practical situations one expects only a finite time series of a
system variable to be known. We show that the finite time series can be repeatedly used to estimate unknown
parameters with an accuracy that improves and then saturates to a constant value with repeated use of the time
series. Finally, we suggest an important application of the parameter estimation method. We propose that the
method can be used to confirm the correctness of a trial function modeling an external unknown perturbation
to a known system. We show that our method produces exact synchronization with the given time series only
when the trial function has a form identical to that of the perturbation.

PACS number~s!: 05.45.Tp, 05.45.Xt
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I. INTRODUCTION

An experimental observation often consists of readin
time series output from a dynamical system. Such a t
series can contain information about the number as wel
the form of the functions governing the evolution of the sy
tem variables including nonlinearities~if any! and the param-
eters@1#. The estimation of parameter values from a giv
chaotic scalar time series of a nonlinear system is the topi
our interest here.

We have recently reported a method to estimate unkno
parameters dynamically from the chaotic time series o
single phase space variable when the system equation
known @2#. The method is based on a combination of sy
chronization@3–5# and adaptive control@6# similar to that
used by John and Amritkar@7,8#.

The problem of parameter estimation in nonlinear dyna
ics has been considered earlier. Parlitz, Junge, and Koc
have developed a static method@9# based on minimization
while Parlitz has developed a method based on autosync
nization @10#. Unlike our method, autosynchronizatio
method requires an ansatz for the parameter control loop
gives slower convergences in many cases. A method req
ing a vector time series has been reported by Baker, Go
and Blackburn@11# and another method based on symbo
dynamics is discussed in Refs.@12–14#. The effect of noise
on parameter estimation was studied by us@2# and recently
by Goodwin, Brown, and Junge@15#. In contrast to many of
these methods our method in Ref.@2# works asymptotically
so that an exact estimation of the parameters is in princ
possible. The static methods based on minimization are c
putationally expensive because they take a longer time to
due to many iterations required for convergence, and t
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also require annealing to eliminate the possibility of getti
trapped in a local minimum. The dynamic method as d
scribed in Ref.@2# requires only one time evolution of th
system equations. The method also takes care of anneali
a dynamic way.

In the first part of this paper we review our method f
parameter estimation in brief. We extend it to a case wh
the time series of ascalar functionof phase space variable
is given. We then go on to study the applicability of th
method to a general quadratic flow in three dimensions. T
system has a large number of parameters and we try to
mate some of them using our method.

In the second part, we show that it is possible to exte
our method to a more realistic situation, when the given ti
series is truncated after a finite time. We find that a repetit
use of the finite time series can be made to estimate
unknown parameters of the underlying system without al
ing the dynamic nature of the method. The accuracy of s
an estimation increases with increasing length of the gi
time series. We also see that the accuracy saturates with
number of times the finite time series is used.

Lastly, in the third part of this paper, we suggest an int
esting application of the parameter estimation method. C
sider a situation where an unknown perturbation disturb
known chaotic system. In many practical situations when
external perturbation is unknown, an ansatz function mod
ing the behavior of the external perturbation is tried. W
show that it is possible to use our parameter estima
method to confirm the form of an ansatz function modeli
the external perturbation.

In Sec. II A we briefly introduce our method of paramet
estimation and discuss its important features. In Sec. II B
extend it to a general situation when the given time serie
obtained as a scalar function of the phase space varia
Section II C deals with a general quadratic flow in three
mensions. In Sec. III we extend the method to the case
finite time series and present two examples. Finally, in S
6461 ©2000 The American Physical Society
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6462 PRE 61ANIL MAYBHATE AND R. E. AMRITKAR
IV we apply the method to confirm the form of an unknow
external perturbation to a known dynamical system. In S
V we conclude with a summary of the results.

II. PARAMETER ESTIMATION

A. The method

Here, we briefly introduce our method for parameter e
mation from a scalar time series. We would like to direct t
reader to Ref.@2# for a more detailed discussion. We start
considering an autonomous dynamical system of the for

ẋ5f~x,a!, ~1!

where x5(x1 ,x2 , . . . ,xn) is an n-dimensional state vecto
whose evolution is described by the functionf
5( f 1 , . . . ,f n). We denote a set ofm unknown scalar pa-
rameters bya5(a1 ,a2 , . . . ,am). The possible appearanc
of any other parameters~assumed to be known! is not shown
in Eq. ~1!.

Without loss of generality we assume that a time serie
the variablex1 is given. The problem we consider is to es
matea from the given scalar time series ofx1, assuming the
functional form off to be known.

In analogy with the control method used earlier by Jo
and Amritkar@7,8#, we combine synchronization with adap
tive control to achieve our goal of estimatinga in Eq. ~1! as
follows. We construct another system of variablesx8 having
a structure identical to that of Eq.~1! with a linear feedback
proportional to the differencex182x1 added in the evolution
of the variablex1. Thus the system is given by

ẋ185 f 1~x8,a8!2e~x182x1!,

ẋ j85 f j~x8,a8!, j 52, . . . ,n, ~2!

where the functionf5( f 1 , . . . ,f n) is the same as that in Eq
~1!. The initial values of parametersa8 that correspond to
the unknown parametersa in Eq. ~1! are chosen randomly
The newly introduced parametere is the feedback constan
It is known that ifa85a then the systems~1! and ~2! syn-
chronize after an initial transient, provided the condition
Lyapunov exponents~CLE’s! of the system~2! are all nega-
tive @2#. The CLE’s are obtained from the eigenvalues of t
Jacobian matrixJ whose elements are given by

J3i j 5
] f i

]xj
2ed i1d j 1 . ~3!

Since the valuesa5(a1 , . . . ,am) are unknown, we need
to seta85(a18 , . . . ,am8 ) to random initial values and evolv
themadaptivelyso that they converge to the valuesa. Note
that a good guess for the initial values ofa8 can be useful in
many cases.

We first consider the case whena ~and its counterpar
a8) contains only a single element, i.e., the case when on
single parameter in Eq.~1! is unknown. For notational sim
plicity we now denote this single parameter bya. We start
with a random initial value fora8 and evolve it in a con-
trolled fashion so that it converges toa. This is achieved by
raisinga8 to the status of a variable which evolves as
c.

i-
e

f

n

l

e

a

ȧ852d~x182x1! wS ] f 1

]a8
D , ~4!

whered is called the stiffness constant andw is some suit-
ably chosen function of] f 1 /]a8. A simple choice forw is
w5] f 1 /]a8 giving the adaptive evolution equation fora8
as

ȧ852d~x182x1!
] f 1

]a8
. ~5!

Equation~4! or Eq.~5! when coupled with Eq.~2! consti-
tutes our method of parameter estimation. A vector (x8,a8)
initially set to random values asymptotically converges to
vector (x,a) in Eq. ~1! provided the conditional Lyapunov
exponents for the combined system@Eqs.~2! and~5!# are all
negative. This facilitates the estimation ofa.

Equation ~5! is equivalent to a dynamic algorithm fo
minimization of synchronization error between Eqs.~1! and
~2! as discussed in Ref.@2#.

Note that, if we assume in the above discussion that
unknown parametera appears in the functionf 1 correspond-
ing to the variablex1 for which the time series is given, the
the calculation of the factor] f 1 /]a8 in Eq. ~5! is straight-
forward. However, this may not necessarily be the case.
parametera may appear in any of the other system fun
tions. If it appears in the functions for the variables for whi
the time series is not given, e.g., in any of the functio
f 2 , . . . ,f n in Eq. ~1!, then correspondingly the calculation o
the factor] f 1 /]a8 becomes nontrivial.

To make this point clear we assume that the unkno
parametera appears in the functionf k(x) governing the evo-
lution of variablexk with kÞ1, while the time series ofx1 is
given. In such a case Eq.~5! is modified to

ȧ852d~x182x1!
] f 1

]xk8

] f k

]a8
~6!

~see Ref.@2#!.
Further, if the variablexk itself does not appear in th

function f 1 then the complexity of the calculation increas
still more. This issue was explained in detail with an e
ample in Ref.@2#.

Next we consider the case when the seta of unknown
parameters contains more than one element,
(a1 ,a2 , . . . ). Now we set up anadaptive evolution for each
of the corresponding parameters (a18 ,a28, . . . ). For thecase
of two unknown parametersa1 and a2, appearing in func-
tions f k and f l respectively, the adaptive evolution is give
by

ȧ1852d1~x182x1!
] f 1

]xk8

] f k

]a8
,

ȧ2852d2~x182x1!
] f 1

]xl8

] f l

]a8
, ~7!

where d1 and d2 are two stiffness constants deciding th



a

tio
-

u

u
f t
e

ve
s
i

t
e
t u
ac

to

w
ve

ee
n
ed

a
tr

n
th

Lo-

ase

s
e

s
-
e

ble
time

PRE 61 6463DYNAMIC ALGORITHM FOR PARAMETER ESTIMATION . . .
rates of convergence. For estimating the values ofa1 and
a2, Eqs.~7! can be coupled with Eqs.~2!, which provide the
necessary synchronization of the system variables if the
sociated CLE’s are negative.

In the next subsection we extend our method to a situa
when a time series of ascalar functionof phase space vari
ables is given. We show that it is possible not only to build
synchronizing system but also to adaptively estimate an
known parameter.

B. Parameter estimation using time series of a scalar function
of variables

In our discussion of parameter estimation in the previo
subsection, we have assumed that time series of one o
phase space variables is given. This may not be the cas
many practical applications, and in general the obser
quantity can be a function of the phase space variables,
s(x). It is possible to construct a synchronization scheme
such a situation@16#.

We consider the system given by Eq.~1! and assume tha
the time seriess(x), which is a function of phase spac
variables, is given. A synchronization scheme can be se
in this case by using a suitable modification of the feedb
in Eq. ~2! as follows@16#:

ẋ185 f 1~x8,a!2e sgnS ]s8

]x18
D @s82s~x!#,

ẋ j85 f j~x8,a! j 52, . . . ,n, ~8!

where s85s(x8) and we give a feedback proportional
(s82s) in the function f 1 with feedback constante. The
function s(x) denotes the given time series. It can be sho
that if the parametersa are assumed to be known, the abo
system of equations forx8 @Eqs. ~8!# converges tox, pro-
vided the CLE’s are all negative@16#.

In Eqs. ~8!, we have assumed thats(x) has an explicit
dependence on the variablex1 so that]s8/]x18Þ0. If this is
not the case, we can choose any other variable for the f
back on whichs(x) depends explicitly. The factor sgn() i
Eq. ~8! makes sure that the term provides a ‘‘negative fe
back’’ for all times so that a convergence is feasible.

To estimate the parametera in such a case, we set up
synchronization scheme combined with an adaptive con
in analogy with Eqs.~2! and~4!. This system can be written
as

ẋ185 f 1~x8,a8!2e sgnS ]s8

]x18
D @s82s~x!#

ẋ j85 f j~x8,a8! j 52, . . . ,n,

ȧ852d sgnS ]s8

]x18
D @s82s~x!#

] f 1

]a8
. ~9!

Equations~9! can be used for estimatinga when a time
series ofs(x) is given. The condition for such an estimatio
of a to be possible is that the CLE’s associated with
system~9! are all negative.
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To demonstrate the above procedure, we consider the
renz system given by

ẋ5s~y2x!,

ẏ5rx2y2xz,

ż5xy2bz, ~10!

where the variables (x,y,z) define the state of the system
while (s,r ,b) are the three parameters. We consider the c
when the time series ofs(x,y,z)50.5x211.1y is given as an
output of the above system and the parameters is unknown.

To estimate the value ofs, we form a system of variable
(x8,y8,z8,s8) similar to Eq.~9!. The evolution equations ar

ẋ85s8~y82x8!2e sgn~x8!@s82s~x,y,z!#,

ẏ85rx82y82x8z8,

ż85x8y82bz8,

ṡ852d sgn~x8!@s82s~x,y,z!#~y82x8!, ~11!

FIG. 1. The plots~a!–~d! show the evolution of the difference
x82x,y82y,z82z,s82s as a function of time for the Lorenz sys
tem @Eqs. ~10! and ~11!#, respectively, for the case when a tim
series fors(x,y,z)50.5x211.1y is given ands is unknown. The
differences go to zero asymptotically, indicating that it is possi
to use our method to estimate an unknown parameter when the
series fors(x) is given.
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wheres850.5x8211.1y8.
Figures 1~a!–1~d! show the evolution of the difference

x82x,y82y,z82z,s82s respectively@Eqs. ~10! and ~11!#
as a function of timet. We see that these differences all go
st
th
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n
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s

zero ast→`. This indicates that an unknowns can be es-
timated using Eq.~11!.

The CLE’s are obtained using the Jacobian matrixJ given
by
J5S 2s2e sgn~x!x s21.1e sgn~x! 0 y2x

r 2z 21 2x 0

y x 2b 0

2d sgn~x!x~y2x! 21.1d sgn~x!~y2x! 0 0

D . ~12!
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We have verified that all the CLE’s are less than zero.
We have performed simulations and successfully e

mated unknown parameters in a Lorenz system with o
forms of the function s(x,y,z). The function s(x,y,z)
should, however, be such that all the associated conditi
Lyapunov exponents are negative.

C. A general quadratic flow in three dimensions

Now we consider a quadratic flow in three dimensio
~3D! given by

ẋ5a01a1x1a2y1a3z1a4x21a5y2

1a6z21a7xy1a8yz1a9xz,

ẏ5b01b1x1b2y1b3z1b4x21b5y2

1b6z21b7xy1b8yz1b9xz,

ż5c01c1x1c2y1c3z1c4x21c5y2

1c6z21c7xy1c8yz1c9xz, ~13!

where (a0 , . . . ,a9 ,b0 , . . . ,b9 ,c0 , . . . ,c9) form a 30 dimen-
sional parameter space and (x,y,z) are the three variables
We have performed simulations in which we have assum
more than one of the 30 parameters of the system~13! to be
unknown and tried to estimate them when a time series
one of the variables is given.

To elaborate, we assume some of the 30 parameters
unknown while the remaining are known. Some of t
known or unknown parameters may be zero, thereby mak
the corresponding term absent from the system. To illust
the procedure we consider a case when three param
(a1 ,a2 ,a7) are unknown and a time series ofx is given. We
set up a system of equations similar to Eq.~2! with adaptive
control loops similar to Eq.~7! for the three parameter
(a18 ,a28 ,a78) as

ȧ1852d1~x82x!x8,

ȧ2852d2~x82x!y8,

ȧ7852d3~x82x!x8y8. ~14!
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Equations~14! when coupled to the system of variable
(x8,y8,z8) with an identical structure of evolution as Eq
~13! and with a feedback term in the evolution ofx8 can
provide the necessary estimation of parameters when
CLE’s associated with the reconstructed system are all ne
tive.

In Figs. 2~a!–2~c! we plot the time evolution of the dif-
ferencesa182a1 ,a282a2 ,a782a7 as a function of time. The
correct value ofa7 was zero while the other two were non
zero. All the differences go to zero, indicating the feasibil
of simultaneous estimation of the three paramet
(a1 ,a2 ,a7) even when the actual value of one of them
zero. This shows that the method does not falsely dete
term that is absent in the system.

We have found cases when our method can be used
cessfully for the system~13! to estimate as many as fiv

FIG. 2. The plots~a!–~c! show the evolution of the difference
a182a1 ,a282a2 ,a782a7 for a general quadratic flow in 3D@Eqs.
~13! and~14!#, plotted as a function of time when the time series
x is given. We see that all the differences approach zero, indica
the feasibility of simultaneous estimation of more than one para
eter. The correct value ofa7 was zero, showing that a term absent
the flow equations is not falsely detected by our method.
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parameters simultaneously.~One such case is the set of p
rametersa1 ,a2 ,a7 ,b3 ,c1, while the time series ofx is
given.!

Further, we have also found that whenany two of the 30
parameters in the system~13! are unknown, we can appl
our method to simultaneously estimate them asymptotic
to any desired accuracywhen the time series of a suitab
chosen variable is given. Our results suggest that the in
mation about all 30 parameters should in principle be c
tained in the time series of a single variable of the syste
although at present we do not have any systematic appr
to the simultaneous estimation of all of them.

III. PARAMETER ESTIMATION USING A FINITE TIME
SERIES

A. Algorithm for repetitive use

In this section we discuss an algorithm for repetitive u
of our method to impove the accuracy of parameter esti
tion when the given time series is of finite duration. Befo
going on to describe the algorithm it should be mention
here that, even if a finite time series is used repeatedly, w
not expect an exact estimation of the unknown paramete
finite chaotic trajectory sets a limit on the accuracy to wh
the unknown parameter can be estimated. This can be se
follows. We consider symbolic dynamics on the attractor t
provides a generating partition of the attractor. It is w
known that as the system evolves in time, a finer and fi
coarse-graining is required to specify a particular traject
or, alternatively, the trajectory gives us a finer coarse-grai
information about the attractor. The number of coar
grained partitions as a function of time varies as

np;exp$ht%, ~15!

whereh is the Kolmogorov entropy@17#.
If jd is the volume of a hypercube in ad dimensional

phase space and if the size of the attractor is normalize
unity, the number of hypercubes in a generating partit
may be approximated as

np;
1

jd . ~16!

Equations~15! and ~16! indicate that the length scale of
hypercube in a generating partition varies as

j;expH 2
h

d
tJ . ~17!

It can be seen from Eq.~17! that as long ast is finite, the
volume of the hypercube in a coarse-graining of the attra
will not reduce to zero. Thus a finite trajectory sets a limit
the accuracy to which any information can be extracted fr
it. This can be further related to Lyapunov exponents us
the famous Kaplan-Yorke conjecture@18# as

j;expH 2
(l.0l

d
tJ , ~18!
ly
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wherel is the characteristic Lyapunov exponent of the s
tem. For a chaotic system with a single positive Lyapun
exponent denoted byl1, Eq. ~18! reduces to

j;expH 2
l1

d
tJ . ~19!

Now we will discuss the algorithm for repetitive use of
finite time series to estimate an unknown parameter. As
the case considered in Sec. II A, we assume that the pa
etersa5(a1 ,a2 , . . . ,am) in Eq. ~1! are unknown while the
time series ofx1 is given. We further assume that the tim
series is truncated after a finite timeT.

For the time interval 0<t<T, we can use a procedur
identical to that described earlier@Eqs.~2! and~5!# to evolve
variables (x8,a8) with random initial conditions. The given
finite time series is fed into system~2! as in the earlier case
In this way we can get an approximate value ofa, which we
denote asa15a8(T).

Now at time t5T we set the variablesx8 to exactly the
same ~randomly chosen earlier! initial values while a8
5a1, and feed the same finite time series$x(t)u0<t<T%
again into the system~2! through the feedback terms in Eq
~2! and ~5!, i.e., we setx(t1T)5x(t). We now evolve the
variables (x8,a8) for the time intervalT<t<2T to obtain a
new estimated value ofa, which isa25a8(2T).

We repeat the procedure to get successive estimate
the value ofa denoted bya1,a2,a3, . . . ,aN, . . . at times
t5T,2T,3T, . . . ,NT, . . . , respectively. Thus, starting from
an initial guess for the value ofa, we obtain a sequence o
estimatesa0,a1, . . . ,aN after N usages of the given finite
time series. For large enoughN we get a better and bette
estimate ofa, although eventually the accuracy of such
estimate saturates asN is increased further.

The conditions for the method of parameter estimat
using a finite time series to work successfully are that
conditional Lyapunov exponents associated with the rec
structed system should be all negative, and the timeT after
which the given time series is truncated should satisfyT
.t, wheret denotes the transient time required for synch
nization of the systems~1! and ~2! with the parameter evo
lution given by Eq.~5!. In the next subsection, we discus
two examples of parameter estimation from a finite time
ries, viz., a Lorenz system and an electrical circuit of a ph
converter.

B. Examples

1. Lorenz system

As our first example we choose the Lorenz system giv
by Eq. ~10!, where we assume that the time series$x(t)u0
<t<T% is given and the value ofs is to be estimated. We
set up the following system of equations@see Eqs.~2! and
~5!#:

ẋ85s~y82x8!2e~x82x!,

ẏ85rx82y82x8z8,

ż85x8y82bz8,

ṡ852d~x82x!~y82x8!, ~20!



ly

s
se

e
tim
es

ar

iz

tim

te

t

ca
is

h

e

ent

ery

te
se-
e

po-

ns

the
-
n-

an
-

t

s

ce
see

and
he

,

6466 PRE 61ANIL MAYBHATE AND R. E. AMRITKAR
where we feed the given time series in the evolution ofx for
the interval 0<t<T to obtain the first estimates1.

As described in the Sec. III A, we then go on repetitive
feeding the same finite time seriesx(t) into Eq. ~20! to ob-
tain successive estimates for the value ofs. Starting from a
random initial value we denote this sequence of estimate
s0,s1, . . . ,sN, whereN denotes the number of times we u
the given time series.

In Fig. 3 we plot the evolution of the differences82s as
a function of timet during the time interval 0<t<3T where
we use the time seriesx(t) thrice. We see that the differenc
decreases as we increase the number of times the finite
series is used. We also observe that shortly after each r
ting of the initial vector (x8,y8,z8), which is done at times
T,2T, the synchronization weakens and fluctuations
present. This is due to the random resetting of they and z
components, which gives a transient before the synchron
tion is recovered. An appropriate feedback constante may be
chosen to lessen this transient in every usage of the
series.

In Fig. 4 we plot the successive differencessN2s as a
function of N, the number of times we use the given fini
time series. We see that the differencesN2s goes on de-
creasing with increasingN. However, asN is increased fur-
ther, it saturates to a constant finite value depending on
length of the time series used for the calculations. This
consistent with our expectations that finite time series
contain only finite information about the system, as d
cussed in Sec. III A, e.g., usingl1;0.9, the finest length
scale that can be obtained using a finite time series witT
530 is estimated to be 0.05@Eq. ~19!#, which means an
accuracy of about 1023. This is also the order of magnitud
of the accuracy of parameter estimation.

FIG. 3. The plot shows the evolution of the differences82s as
a function of time in the Lorenz system@Eq. ~20!# with unknown
parameters when the given time series ofx is truncated after the
time T520. We have used the finite time series three times
plotted the curve for the interval 0<t<3T. We see that the succes
sive values of the difference att50,T,2T,3T decrease. This indi-
cates that a repetitive use of the finite time series can improve
accuracy of parameter estimation.
by
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The three curves in Fig. 4 correspond to three differ
values ofT5T1,T2,T3. We see that increasingT gives a
better estimate of the parameter. This is natural since a v
long time series corresponding toT→` is expected to give
an exact estimation of the unknown parameter.

We have similarly implemented our method to estima
other parameters of the Lorenz system using finite time
ries of eitherx or y. The method fails to estimate any of th
parameters when the time series ofz is given. The reason for
this is that one of the associated conditional Lyapunov ex
nents is critically zero and the convergences are slow.

2. A phase converter circuit

As our next example, we consider the set of equatio
describing an electrical circuit for a phase converter@19#
system in a dimensionless form, given by

ẋ15x2 ,

ẋ252kx22
x1

4
~x1

213x3
2!,

ẋ35x4 ,

ẋ452kx42
x3

4
~x1

213x3
2!1B cost, ~21!

wherek andB are the two parameters. Here we consider
time series$x2(t)u0<t<T% to be given. Notice that the sys
tem ~21! has a simple time dependent term making it a no

d

he

FIG. 4. The graph shows the successive differencessN2s plot-
ted as a function ofN, the number of times a finite time serie
$x(t)u0<t<T% is used to estimate an unknowns in a Lorenz sys-
tem @Eq. ~20!#. We see that after an initial transient the differen
decreases, showing better accuracy of the estimation. We also
that asN increases further the accuracy of estimation saturates,
it is not possible to improve upon the estimation beyond this. T
three curves correspond to three different values ofT where T1

,T2,T3. It can be seen that a largerT leads to a better estimation
as expected.
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autonomous system. Such a system is equivalent to an
tonomous system in higher dimensions. We ha
successfully estimated any one of the parametersk or B ~or
both! using finite time series ofx2(t).

Figure 5~a! shows a schematic diagram of the circuit f
the phase converter. The system in known to exhibit cha
behavior due to period doubling bifurcations, codimensio
bifurcations etc. Figure 5~b! shows a chaotic attractor in th
x1-x2 plane of the phase space.

Figure 6 shows the plot of the successive differenceskN

2k as a function ofN, the number of times we use the give
time series, for two different values of the truncation timeT.
As expected, the accuracy of the estimation increases
increasingT, while showing a saturation with increasin
number of repeated usages.

Thus, we have shown how the method of parameter e
mation can be used when a finite time series is given.
method works when the associated CLE’s are all nega
and the time series given is of longer duration than the tr
sient time required for synchronization.

IV. FORM OF A MODEL PERTURBATION

Here we describe an interesting application of our meth
to test a function modeling an unknown external source

FIG. 5. A schematic diagram~a! of a phase converter circui
@Eq. ~21!# which shows a chaotic behavior.~b! shows a chaotic
attractor for the parameter valuesk50.1, B53.0.
u-
e

ic
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e
e
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perturbation to a known chaotic system. In many practi
situations when the external source of a disturbance in
known, a trial function is used to model the perturbation.

We imagine a situation when it is required to verify
proposed trial model form for the perturbation. We deno
the actual perturbation by a functionF(x,m) and the trial
function by G(x8,m8), wherem and m8 are parameters. In
the following, we demonstrate the use of our method of
rameter estimation to confirm the form of the trial functio
Note that here we do not deal with the issue of obtaining
form of the model function.

Now if the proposed trial functionG models the externa
perturbationF correctly, then a scheme based on synchro
zation combined with adaptive control should produce s
chronization of variables and make the parametersm8 con-
verge ~to m). Thus a successful synchronization shou
indicate a correctly chosen model function. In this mann
we can use the method to distinguish between a cor
model and a wrong model for an external perturbation. W
elaborate on this application further using the example of
Lorenz system.

Consider the Lorenz system perturbed by a sinuso
term F5A sin(vx),

ẋ5s~y2x!1A sin~vx!,

ẏ5rx2y2xz,

ż5xy2bz, ~22!

where we assume the unperturbed Lorenz system to
known. The functionF5A sin(vx) is the external perturba
tion. We assume that the time series ofx is given as an
output of the system~22!.

To set up the required scheme we construct a system
variables (x8,y8,z8) and their evolution as

FIG. 6. The graph shows the successive differenceskN2k plot-
ted as a function ofN, the number of times a finite time serie
$x2(t)u0<t<T% is used to estimate an unknownk in a phase con-
verter circuit system@Eq. ~21!#. We see that after an initial transien
the difference decreases, showing better accuracy of the estima
We also see that asN increases further the accuracy of estimati
saturates, and it is not possible to improve upon the estima
beyond this using our method.
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ẋ85s~y82x8!1G~x8,y8,z8,m8!2e~x82x!,

ẏ85rx82y82x8z8,

ż85x8y82bz8,

ṁ852d~x82x!
]G

]m8
, ~23!

whereG(x8,y8z8) is the trial perturbation function. We fee
the time seriesx(t) obtained from system~22! into the model
system~23!. Now if G models the behavior ofF correctly
then the two systems should exhibit synchronization, wh
the parameters should show convergence to the correct
ues. In our simulations we have tried several different for
for the trial functionG.

Figures 7~a!–7~c! show the time evolution ofx8
2x, m1, and m2, respectively, while the feedback is give
into x and the trial function isG5m1x21m2. It can be
clearly seen that there is no synchronization of variables.
trial function G5m1x21m2 thus fails to produce synchron
zation and hence can be discarded as a plausible model fF.
We also note that the parametersm18 and m28 do not show
convergence.

In Figs. 8 and 9, we plot similar graphs for two mo
choices of the trial function. In Figs. 8~a!–8~c! we useG
5m1x2m2x3 and plotx82x, m1, andm2 respectively. We
choose this form ofG since it represents the two leadin
terms in the series expansion of the functionF5Asin(vx).

FIG. 7. The plots ~a!–~c! show the time evolution ofx8
2x, m1, and m2, respectively, for the Lorenz system with fee
back given in the equation forx and with the trial perturbation
function G5m1x21m2, while the correct perturbation isF
5A sin(vx) @Eq. ~23!#. We see that the guess functionG5m1x2

1m2 fails to produce synchronization and hence can be disca
as a plausible model forF. It can also be seen that there is n
convergence of the parameters taking place.
e
al-
s

e

ed

FIG. 8. The plots ~a!–~c! show the time evolution ofx8
2x, m1, and m2, respectively, for the Lorenz system with fee
back given in the equation forx and with the trial perturbation
function G5m1x1m2x3, while the correct perturbation isF
5Asin(vx) @Eq. ~23!#. It can be clearly seen that even whenG
5m1x2m2x3 matchesF in form up to two leading terms in the
expansion ofF, it fails to produce synchronization and hence can
discarded as a plausible model forF. Also there is no convergenc
of the parameters taking place.

FIG. 9. The plots ~a!–~c! show the time evolution ofx8
2x, m1, and m2, respectively, for the Lorenz system with fee
back given in the equation forx and with the trial perturbation
function G5m1sin(m2x), while the correct perturbation isF
5A sin(vx) @Eq. ~23!#. It can be clearly seen that the differenc
x82x converges to zero asymptotically, indicating an exact s
chronization between the variables. Thus by using our method
guess for the model perturbation function can be easily justified
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We can see from Fig. 8 that such an approximation fails
produce synchronization and also convergence of par
eters.

As a third choice we useG5m1sin(m2x) in Eq. ~23! and
plot the time evolution ofx82x, m1, andm2 in Fig. 9~a!–
9~c!, respectively. The differencex82x goes to zero as time
increases, showing synchronization. The parametersm1 and
m2 converge to the correct valuesA andv, respectively. The
variablesy8 and z8 also synchronize withy and z, respec-
tively. This confirms that this trial function correctly mode
the functionF.

Now as a last consideration, we use the formG
5m1 sin(m2x) again, but unlike in Eq.~23!, we perturb a
wrong variable in the model system, i.e., we choose to
the trial perturbation in the evolution of, say,y8. The feed-
back is given inx. The evolution equations are

ẋ85s~y82x8!2e~x82x!,

ẏ85rx82y82x8z81G~x8,y8,z8,m8!,

ż85x8y82bz8,

ṁ852d~x82x!
]G

]m8
. ~24!

In Figs. 10~a!–10~c! we plot the time evolution ofx8
2x, m1, and m2, respectively. We see that even ifG cor-

FIG. 10. The plots~a!–~c! show the time evolution of the dif-
ferencex82x and the parametersm1 andm2, respectively, for the
Lorenz system with feedback given in the equation forx and with
the trial perturbation functionG5m1 sin(m2x) in the equation fory,
while the correct perturbation isF5A sin(vx) in the equation forx
@Eq. ~24!#. Thus, unlike the case plotted in Fig. 9, the trial functi
used here perturbs the wrong variable. It can be clearly seen tha
trial function G does not produce synchronization between va
ables. The parameters also do not converge. Thus, as expecte
guess functionG5m1(sinm2x) when added to the wrong variabl
cannot model the perturbation.
o
-

d

rectly modelsF, synchronization does not take place. Th
shows that along with the form ofF we can also confirm a
guess about the perturbed variable.

Thus, the results presented in this section suggest tha
method which we use for estimating parameters can be u
to distinguish between a correct trial function and the wro
trial functions for an unknown external perturbation to
known system@20#.

V. SUMMARY AND CONCLUSIONS

We have described a dynamic method of parameter e
mation from a given chaotic time series of a phase sp
variable of a dynamical system@2#. Further, we have gener
alized the method for the case when the quantity for wh
the time series is given is ascalar functionof the phase space
variables. We have shown that it is possible not only to s
chronize two systems using the time series of the scalar fu
tion but also to asymptotically estimate unknown parame
adaptively to any desired accuracy. This is done by prov
ing a linear feedback in the evolution of one of the variab
on which the scalar function explicitly depends. The meth
works successfully provided the function for which the tim
series is given is such that the associated conditio
Lyapunov exponents are all negative.

We have also applied our method to a system with a la
number of parameters, i.e. a general quadratic flow in
We have observed that a simultaneous estimation of a
parameters is possible provided the condition of converge
as stated in Ref.@2# is satisfied i.e., all the CLE’s are nega
tive.

As a next consideration, we have extended our metho
a realistic situation when the given series is truncated aft
finite time. We have shown that repetitive use of a finite tim
series can be made to estimate an unknown parameter o
system. The accuracy of the parameter estimation satur
as the given finite time series is used more and more tim
The accuracy increases with increasing length of the gi
time series.

Finally, we have demonstrated an important application
our method in confirming the correctness of a trial mod
function for an unknown external perturbation to a know
system. We see that a perfect synchronization between a
turbed system and its dynamical copy using a model for
perturbation is possible only when the form of the trial fun
tion is correctly guessed. These results indicate that
method can be used as a test for the trial model for an
known external perturbation to a known system. Anoth
possible application~not discussed in the paper! is as fol-
lows. Our method may be employed to experimentally m
sure the unknown value of a component added to a kno
circuit. In such a situation the equations governing the circ
are known and can be used to estimate the unknown com
nent value accurately. This is feasible due to the asympt
convergences in our method.
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